\(\int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx\) [579]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 150 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d}-\frac {2 a (A b-a B) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 (a+b) d}+\frac {2 B \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b-a B) \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}} \]

[Out]

-2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d+2/3*B
*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b/d-2*a*(A*b-B*a)*(cos(
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))/b^2/(a+b)/d+2/3*B*
sin(d*x+c)/b/d/cos(d*x+c)^(3/2)+2*(A*b-B*a)*sin(d*x+c)/b^2/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3033, 3079, 3134, 3138, 2719, 3081, 2720, 2884} \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac {2 a (A b-a B) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 d (a+b)}+\frac {2 (A b-a B) \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d}+\frac {2 B \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])),x]

[Out]

(-2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(b^2*d) + (2*B*EllipticF[(c + d*x)/2, 2])/(3*b*d) - (2*a*(A*b - a*B
)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(b^2*(a + b)*d) + (2*B*Sin[c + d*x])/(3*b*d*Cos[c + d*x]^(3/2)) +
 (2*(A*b - a*B)*Sin[c + d*x])/(b^2*d*Sqrt[Cos[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3033

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3079

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c +
d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*
(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n
, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B+A \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (b+a \cos (c+d x))} \, dx \\ & = \frac {2 B \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \int \frac {\frac {3}{2} (A b-a B)+\frac {1}{2} b B \cos (c+d x)+\frac {1}{2} a B \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b+a \cos (c+d x))} \, dx}{3 b} \\ & = \frac {2 B \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b-a B) \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} \left (-3 a A b+3 a^2 B+b^2 B\right )-\frac {1}{4} b (3 A b-4 a B) \cos (c+d x)-\frac {3}{4} a (A b-a B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{3 b^2} \\ & = \frac {2 B \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b-a B) \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}-\frac {4 \int \frac {\frac {1}{4} a \left (3 a A b-3 a^2 B-b^2 B\right )-\frac {1}{4} a^2 b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{3 a b^2}-\frac {(A b-a B) \int \sqrt {\cos (c+d x)} \, dx}{b^2} \\ & = -\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 B \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b-a B) \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}+\frac {B \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b}-\frac {(a (A b-a B)) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{b^2} \\ & = -\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d}-\frac {2 a (A b-a B) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 (a+b) d}+\frac {2 B \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b-a B) \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.50 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.73 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\frac {\frac {2 b \left (-9 a A b+9 a^2 B+2 b^2 B\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {b \left (-6 A b^2+8 a b B\right ) \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{a}+\frac {4 b^2 B \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {12 b (A b-a B) \sin (c+d x)}{\sqrt {\cos (c+d x)}}+\frac {6 (-A b+a B) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 b (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (a^2-2 b^2\right ) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a \sqrt {\sin ^2(c+d x)}}}{6 b^3 d} \]

[In]

Integrate[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])),x]

[Out]

((2*b*(-9*a*A*b + 9*a^2*B + 2*b^2*B)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) + (b*(-6*A*b^2 + 8*a*b
*B)*(2*EllipticF[(c + d*x)/2, 2] - (2*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b)))/a + (4*b^2*B*Sin[
c + d*x])/Cos[c + d*x]^(3/2) + (12*b*(A*b - a*B)*Sin[c + d*x])/Sqrt[Cos[c + d*x]] + (6*(-(A*b) + a*B)*(-2*a*b*
EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (a^2 - 2*b
^2)*EllipticPi[-(a/b), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*Sqrt[Sin[c + d*x]^2]))/(6*b^3*d)

Maple [A] (verified)

Time = 15.71 (sec) , antiderivative size = 439, normalized size of antiderivative = 2.93

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 B \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{b}+\frac {2 \left (A b -B a \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{b^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+\frac {2 \left (A b -B a \right ) a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{b^{2} \left (a^{2}-a b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(439\)

[In]

int((A+B*sec(d*x+c))/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B/b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*
x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
)+2*(A*b-B*a)/b^2/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),
2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))+2*(A*b-B*a)*a^2/b^2/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2
*a/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(5/2)/(a+b*sec(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{5/2}\,\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )} \,d x \]

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b/cos(c + d*x))),x)

[Out]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b/cos(c + d*x))), x)